6th grade FM: How do we find the probability of compound events?

1. Jimmy is playing a game with his friend John. The following spinner gets spun twice. Jimmy wins if the sum is even and
 John wins if the sum is odd. Is this a fair game?
2. Aaron decides to pull some marbles out of a bag. He pulled out 3 green, 4 red, 6 blue, and 2 yellow. What is the probability
has
inabag. that Aaron will pull out a red marble next? Is this theoretical
or experimental?

| 3 g |
| :--- | :--- |
| 4 r |
| 6 b |$\quad P(\mathrm{red})=\frac{4}{15} \quad$ Experimental

The Counting Principle: Multiply your choices to get the total \# of You want to know how many outfits outcomes. can make. You have a red, a blue, and a green shirt. You have a pair of jeans and a pair of khaki pants. You have blue and black shoes. How many outfits could you make?
 - $\frac{2}{\text { shoe }}$ $=12$ Green, Jeans, Blue Green, Jeans, Black Green, Khaki, Blue. Green, Khakis Black

## 12ouffits

6th Grade FM 5.1 Compound probability and the counting principal key.notebaabry 23, 2019
I like to go to Dairy Queen to buy blizzards. I have 4 choices of fruits, 3 types of cookies, and 4 toppings to choose from. If I pick a fruit, cookie, and topping, how many options of blizzards would I have?

$$
\frac{4}{\text { fruit }} \frac{3}{\text { cookie }} \frac{4}{\text { toppings }}=\frac{48}{\begin{array}{c}
\text { Blizzard } \\
\text { Options }
\end{array}}
$$

I would have 48
Blizzard options

Compound Probability

$$
P(A, B)=P(A) \times P(B)] \text { Formula }
$$

Ex 1: Suzzie wants to spin the following spinner and roll a die. What is the probability that Suzzie will spin a $C$ and roll an even number?

$$
\begin{aligned}
P(C \text { even }) & =P(C) \cdot P(E) \\
& =\frac{1}{4} \cdot \frac{3}{6} \\
& =\frac{1}{8}
\end{aligned}
$$

Sure has a $\frac{1}{8}$ chance of getting a and even.

6th Grade FM 5.1 Compound probability and the counting principal key.notebaabry 23, 2019
Ex 2: Mark wants to pick a marble out of a bag and flip a coin. What is the probability that he will pick out a blue marble and flip a tail?


$$
\begin{aligned}
P(\text { Blue, Tail }) & =P(B) \cdot P(T) \\
& =\frac{2}{6} \cdot \frac{1}{2} \\
& =\frac{1}{6}
\end{aligned}
$$

Mark has a $\frac{1}{6}$ chance of getting a blue marble and a flipping a tail.

Ex 3: Shawn's teacher decides to pull names out of a hat. She decides she is going to pull a name and put it back in the hat and pull another one. There are 22 kids in the class. What is the probability that she picks Sarah's name and then Jason's name out of the hat?

$$
\begin{aligned}
P(\text { Sarah, Jason }) & =P(S) \cdot P(J) \\
& =\frac{1}{22} \cdot \frac{1}{22} \\
& =\frac{1}{484}
\end{aligned}
$$

Probability Packets $2 A$ and $2 B$

